MOF technique could improve gas storage
12 Oct 2012
Reserarchers are planning to exploit opportunities in global carbon capture, hazardous gas storage and natural gas processing, using a novel technique to produce Metal-Organic Frameworks (MOFs).
MOFs have the highest surface-area of any known substance- a sugar-lump sized piece of MOF material can have the same surface area as a football pitch.
Until now MOF manufacturing techniques have been limited as they are costly, slow and require large quantities of solvents, which can be toxic and harmful to the environment.
Now, Professor Stuart James in Queen’s School of Chemistry and Chemical Engineering has patented a novel technique for the synthesis of MOFs, allowing affordable, large-scale deployment of these materials.
Professor James said: “Because of their extremely large surface-areas and the flexibility with which their properties can be varied, MOFs can be used as sponges, to soak up and store gases, or as filters to separate and capture specific gases and chemicals. For example, they can be used to greatly increase the storage capacity of gas tanks.
A sugar-lump sized piece of MOF material can have the same surface area as a football pitch.
“Now, for the first time, our patented technology allows the synthesis of MOFs without using any solvents, even water, and on greatly reduced timescales, by making use of mechanochemistry.
“By simply grinding together two cheap precursors in a basic milling machine, the MOF material is produced in a matter of minutes, in a powder form, ready for applications without further treatment, and without generating solvent waste.”
Granting of the patent has enabled the formation of a new company called MOF Technologies from Queen’s spin-out arm QUBIS. Seed funding has been provided by both QUBIS and NetScientific, which specialises in commercialising technologies developed within university laboratories.
CEO of MOF Technologies, Tom Robinson added: “The potential for this technology is huge. Industry has known for some time about the incredible properties of MOFs and hundreds of millions of dollars are being spent on their development in research labs around the world.
“We can now manufacture these materials in a scalable and environmentally-friendly way, unlocking their potential to transform the transport, gas storage and medical industries in the years to come.”